

Presentation Outline

- Introduction Ministry of Water and Environment
- Introduction Ambient Water Quality Monitoring on the Murchison Bay
- Methodology Sampling points, water quality analysis and statistical analysis
- Findings
- Conclusions & Recommendations

Introduction

Ministry of Water and Environment

Ensures the provision of quality water and environmental services in Uganda. It has the mandate of;

- Managing and sustainably utilizing the water and environmental resources of the country.
- Improving the quality of water resources for the population.
- Ensuring better access to water and environmental resources in all parts of the country.

Water Quality Monitoring Network

It's issue-based for integrated water quality monitoring across the country.

Comprises of 147 stations (currently under review).

Objectives of the Water Quality Monitoring Network

- To determine the impact of human activities on water resources quality (SDG 6.3.2).
- Compliance of industrial and municipal effluent discharges to national wastewater standards. (S.D.G 6.3.1).
- Compliance of quality of domestic water supplies to national standards. (S.D.G 6.1.1).

Introduction – Ambient Water Quality Monitoring in the Murchison Bay

- Lake Victoria is the source of the Nile
- The Murchison bay lies on the northern part of the L.
 Victoria at latitude 0° 7′ 0″ N and longitude 32° 37′
 0″E
- The catchment of the Murchison bay includes
 Kampala city which is highly industrialized.

Methodology - Sampling, Water Quality Analysis & **Data Interpretation**

Sampling Points

- 23 Sampling points adopted from LVEMP (25 Km^2)
- Sampling sites form a transect from the bay to the open water.

•2 Sampling campaigns in FY 2022/2023

Sampling

 Water column profiling using van-dorn sampler, surficial sediment sampling.

Water Quality

- Heavy metals using ICP – OES
- Nutrients (N &P) using spectroscopy on discrete analyzer
- Algae identification at X400 magnification
- Statistical analysis using R Studio 4.3.

Findings – Nutrients

Mean concentrations	TN (mg/L)	TP (mg/L)
Shoreline	2.87 ± 3	0.09 ± 0.07
Mid point	1.59 ± 2.7	0.08 ± 0.12
Open waters	0.81± 34	0.08 ± 0.02

TN:TP Ratio

- Ratio of 11:1
- Phosphorus is limiting
- Deficiency of P is conducive for N – fixing bacteria

Findings – Productivity

Mean concentrations Chl –a (µg/L)

Shoreline	174 ± 74 173 ± 81	Hyper
Mid point	173 ± 81	trophic

Open water 13 ± 1.4

Examples of algae identified in the bay

Blue green algae/ Cyanophyta Cylindrospermopsis Sp, Merismopedia Sp, Anabaena

sp, Planktothrix Sp

Green-algae/ Chlorophyta Microspora Sp, Desmidium, Spirogyra Sp, Pithophora

Pandorina, Zygnema Coelastrum Scenedesmus sp, Cosmarium sp

Chrysophytes **Euglenopphytes**

Melosira Sp, Surirella Sp, Aulacoseira Sp, Rhopalodia

Most dominant species are blue-green algae

Socio- economic Implications

- Poor esthetics (green water) which discourages tourism,
- High cost of water treatment due to clogging of filters
- Reduced fisheries since clogged fish gills can lead to fish kills
- Health impact of algal toxins in the water

Findings – Heavy metals' concentrations

- Analyzed Cd, Pb, Cu, & Ni
- In the water column elements were below detection limit of the method used.
- In sediments concentrations were variable.
- Highest concentrations observed at point discharge points of Nakivubo and Kinawataka areas – major effluent discharge channels
- Heavy metals are being sunk in the sediments of the bay & could act as a potential source upon mixing.

Implications of heavy metals in the lake include

- Bio accumulation in fish tissue and subsequently in humans
- Increased costs of water treatment for domestic use

Conclusions and Recommendations

Conclusions

- 1. The bay is becoming a source of pollution to the open lake.
- 2. Most dominant algae species are blue green algae with health implications on fish and humans
- 3. Heavy metals settle in the sediment but may be re-suspended during mixing

Recommendations

- 1. Industrial and municipal wastewater discharges in Kampala city must be regulated.
- 2. Degraded wetlands should be restored & the 200 meters' buffer zone stipulated in the Environment Management Act protected.
- 3. Advocate for pollution control at source through resource efficiency and clean production.

