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1. Introduction

This is the final report for the project: “Advancing Drought Monitoring, Prediction, and Early Warning
System in the Eastern Nile Basin.” It summarizes the work done on the project, including the objectives,
approach, results and conclusions/recommendations.

The overall objective of the project has been to develop a demonstration seasonal hydrological forecast
system for the Eastern Nile (EN) Basin. The system monitors climate and hydrology in near real-time,
and produces climate and hydrological forecasts on a seasonal (out to 6 months) basis aimed at drought
forecasting. The system is updated daily, and runs about 1-2 days behind real-time, which is based on the
availability and latency of the contributing data products. The seasonal forecasts are updated once a
month. This is supported byan assessment of historic drought hazard risk in the basin that integrates
multiple sources of information from ground observations, satellite remote sensing and climate and
hydrological models to provide the best estimate of drought conditions historically. The real-time
monitoring and forecasting, coupled with the risk maps, form the basis for early warning and is integrated
into a demonstration drought early warning system via an online interface and dashboard. This approach
is based on our experience in developing, analyzing and applying hydrological forecasts at all scales
(short-term to seasonal), including within the African Flood and Drought Monitor (AFDM; Sheffield et
al., 2014), a continental-scale hydrological monitoring and forecasting system that has been running
operationally since about 2010, and regional systems such as the Lake Chad Basin Flood and Drought
Monitor (CHAD-FDM; Amani et al., 2019).

The EN system builds on this experience to develop a regional system with higher resolution, additional
functionality for drought forecasting and data access. It also considersa new set of climate forecasts from
the latest set of European climate models hosted by ECMWF. Climate model forecasts such as these are
generally available at about 1.0° (~100km) resolution and aretherefore downscaled to the Skm resolution
of the EN system, and bias-corrected to match the statistics of the observational climatology. A key part
of developing a seasonal forecast system is to evaluate the skill of the seasonal climate forecasts that drive
the hydrological forecasts and identify the best combination of climate models. The individual climate
model forecasts are merged into a multi-model ensemble by weighting individual models based on skill
evaluations. Skill weighted merging has been shown to outperform any individual model and simple
model averaging for a variety of skill metrics (Wanders and Wood, 2016).

A historical database of gridded climate and hydrological variables has been developed for the EN system
to provide historical context for the operational monitoring and forecasting system including the risk
assessments. The historical hydrological data were generated by forcing a hydrological model with
gridded precipitation and temperature data at daily and 0.05° (5km) resolution for 1979-2018, and have
been evaluated in terms of comparisons with observed streamflow and soil moisture, and for drought risk.
The climate forecasts drive the hydrological model to produce forecasts of hydrological variables and
drought indices.

This final report provides an overview of this work including details of the datasets, models and methods
used to develop and evaluate the system, and includes:

1. The approach to construction of the historic climate, hydrological and drought datasets.
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2. Evaluation of this dataset against observational data, and analysis of derived drought risk and
potential exposure.

3. A review of existing sources of climate and drought forecasts from different forecast centers and
databases

4. An evaluation of the skill of these forecasts for a range of seasonal meteorological and drought
metrics.

5. Development and evaluation of a multi-model weighted ensemble forecast.

6. Coupling of the climate forecasts with the hydrological model, to produce seasonal hydrological
forecasts, and evaluation of the skill for a range of metrics.

7. An overview of the online dashboard that provides access to the drought early warning
information and datasets.

2. Methodology

2.1. Historic Reconstruction of Climate and Hydrology

The historical reconstruction of hydrology for the EN Basin has been derived at a high 0.05° ([15 km)
resolution based on the HydrologiskaByransVattenbalansavdelning (HBV) hydrological model (Seibert
and Vis, 2012) and provides daily historic data for several key hydrological variables, including soil
moisture, evaporation, and runoff. The meteorological forcing is derived by merging a wide range of
station, satellite, and atmospheric model data to obtain the best possible predictions across all climate
zones in the basin. The precipitation forcing is taken from the gauge-, satellite-, and model-based
MSWEP product (Beck et al., 2017a, 2019a) for the historic period. The air temperature and wind speed
forcings are taken from the gauge- and model-based MSMet product for the historic period. The runoff
estimates from HBV are routed downstream using the highly computationally efficient RAPID
streamflow routing scheme. To improve the runoff estimates of HBV, we implemented an innovative
parameter regionalization approach that yields optimized model parameters that vary according to
landscape and climate characteristics for the entire model domain, including ungauged regions.

2.1.1. MSWEP

Multi-Source Weighted-Ensemble Precipitation (MSWEP) is a highly innovative gridded precipitation
dataset spanning 1979-2017 (Beck et al., 2017a, 2019a). MSWEDP is unique in several aspects: (i) high
spatial (0.1°) and temporal (3 hourly) resolution, increasing the local relevance of the precipitation
estimates; (ii) optimal merging of precipitation estimates based on rain gauges (WorldClim, GHCN-D,
GSOD, GPCC, and others), satellites (CMORPH, GridSat, GSMaP, and TMPA 3B42RT), and reanalyses
(ERA-Interim and JRA-55), to obtain the best possible precipitation estimates at any location in the basin
from the lowlands to the highlands; (iii) Cumulative Distribution Function (CDF) corrections, to improve
the precipitation frequency; (iv) incorporation of daily (instead of monthly) gauge observations; and (v) a
gauge correction scheme that accounts for reporting times of gauges, to avoid temporal mismatches
between the uncorrected estimates and the gauge data. In addition, systematic biases frequently found in
mountainous areas were ameliorated by first inferring the “true” precipitation from observed streamflow
data using a Budyko model, and then deriving global gap-free precipitation bias correction maps using

Princeton Climate Analytics, Inc. * 134 Nassau St.  Princeton NJ 08542
+1 (609) 608-0561 | www.princetonclimate.com



ENTRO
NILE BASIN INITIATIVE

INITIATIVE DU BASSIN DU NIL

random forest regression (Beck et al., 2019c). Figure 1 outlines the main steps involved in the production
of MSWEP.
Gridded P
datasets
Bias-corrected
climatic P data
Streamflow Derivation of
observations weight maps

Daily gauge
observations

Monthly gauge /
observations

Figure 1. Flow chart of the main processing steps involved in the production of MSWEP.
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MSWEP is the only precipitation dataset to take advantage of the complementary performance of
(re)analysis and satellite precipitation datasets: (re)analysis datasets perform consistently better in frontal-
dominated regions, whereas satellite datasets perform consistently better in convection-dominated
regions. For every 0.1° grid-cell, including those in regions of complex orography, the data sources are
merged depending on the performance of the respective data sources at nearby gauges. In addition,
MSWEP is the only dataset to account for reporting times when applying the gauge corrections, the only
fully global dataset with a 0.1° spatial resolution, and the only dataset to use streamflow observations for
bias correction of precipitation in mountainous regions. Consequently, MSWEP exhibits substantially
more realistic spatial patterns in mean, magnitude, and frequency compared to other state-of-the-art
precipitation datasets. Comparison with other precipitation datasets suggest that those consistently
underestimate precipitation amounts in mountain regions. For the EN system, the data were downscaled
to 0.05° using bilinear interpolation. Figure 2 presents the MSWEP mean annual precipitation map for the
EN Basin.
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Mean annual and monthly precipitation for
the Eastern Nile basin

2.1.2.MSMet

Multi-Source Meteorology (MSMet) is a gridded surface meteorological dataset spanning 1979—present
with a daily temporal and 0.05° spatial resolution derived by merging three bias-corrected (re)analysis
products. Among the included meteorological variables are the metrics daily mean, minimum, and
maximum air temperature, and wind speed. Two reanalyses are used, ERA-Interim (0.75° resolution;
1959—present) and JRA-55 (0.56° resolution; 1979—present), and one analysis, GDAS-Anl (0.25°
resolution; 2015—present). Each product is first downscaled to 0.05° and bias corrected using the station-
based, topographically-adjusted WorldClim climatic dataset (1-km resolution; http://worldclim.org). The
bias-corrected products are subsequently averaged to obtain temporally consistent, high-resolution
meteorological data. The MSMet record is extended until the near present multiple times per day using
the available data sources. Estimates less than one week old are upgraded once additional data sources
become available to ensure the best possible accuracy at any moment in time. Figure 3 outlines the main
steps involved in the production of MSMet. The MSMet daily minimum and maximum temperature data
are used to compute the potential evaporation following Hargreaves (1994).
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Figure 3 presents maps of the MSMet-based mean annual and monthly potential evaporation. Figure 4
presents the elevation for context.
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Figure 4. Surface elevation of the Eastern Nile basin.
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Figure 5. Flow chart of the main processing steps involved in the production of MSMet.
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2.1.3. Hydrological model

The HBV hydrological model (Seibert and Vis, 2012) was used to obtain estimates of key hydrological
variables including soil moisture, evaporation, and runoff. HBV was used because of its low complexity,
high agility, and computational efficiency. Additionally, the model has been successfully used in
numerous studies spanning a wide range of climate and physiographic conditions including several
studies focusing on parts of the Eastern Nile basin (e.g., Rientjes et al., 2011; Gebrehiwot et al., 2013;
Worqlul et al., 2017). The model runs at a daily time step, has one unsaturated-zone store, two
groundwater stores, and 12 calibratable parameters.

All hydrologic models (both physical and conceptual) need to be calibrated in order to obtain accurate
streamflow estimates. We implemented a novel parameter regionalization approach that involves the
optimization of transfer equations linking model parameters to eight predictors related to climate, land
cover, topography, and soils (Beck et al., in review). The optimization was performed in a fully spatially
distributed fashion at high resolution (0.05°), instead of at lumped catchment scale, using an
unprecedented database of daily observed streamflow from 4229 headwater catchments (<5000 km?)
worldwide. The optimized equations were subsequently applied to the Eastern Nile basin to obtain gap-
free parameter maps necessary for the simulations. Running the model at high resolution accounts for the
spatial heterogeneity in rainfall-runoff processes and the nonlinear relationship between model parameters
and runoff estimates, and should therefore result in more robust estimates of the coefficients. Previous
regionalization studies tended to ignore these factors by running the model at a lumped catchment scale
(e.g., Yokoo et al., 2001; Hundecha and Bardossy, 2004; Bastola et al., 2008).

Among the eight predictors, three are related to climate (aridity index, mean annual precipitation, and
mean annual potential evaporation), two to land cover (mean normalized difference vegetation index and
open water fraction), one to topography (mean surface slope), and two to soils (mean clay and sand
content of the soil). To optimize the coefficients of the transfer equations, we used the (u+A) evolutionary
algorithm implemented using the Distributed Evolutionary Algorithms in Python (DEAP) toolkit (Fortin
et al., 2012). As objective function, we used a bounded version of the Kling-Gupta Efficiency (KGEs).
The KGE is an objective performance metric introduced by Gupta et al. (2009) and modified by Kling et
al. (2012) that combines correlation (related to event dynamics), bias (related to runoff totals), and
variability (related to the event distribution). The regionalization approach yielded improvements in
streamflow simulation performance for 88 % of the independent validation catchments, confirming the
effectiveness of the approach in improving streamflow simulation performance (Figure. 6).

(b) Validation KGEg scores
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Figure 6. (a) Transformed Kling-Gupta Efficiency (KGEjp) scores for the first generation of the
optimization process (i.e., using uncalibrated parameters). (b) KGEj scores obtained for the independent
validation catchments using regionalized parameters. (¢) The improvement in KGEjp scores after
regionalization calculated as validation minus uncalibrated KGEz scores. Blue indicates improved
performance, while orange and red indicate deteriorated performance. The scores were calculated using
daily observed and simulated streamflow data. Each data point represents a catchment centroid (N=4229).
Adapted from Beck et al. (in review).

2.1.4. RAPID river routing model

The runoff estimates from HBV were routed downstream using the Routing Application for Parallel
computatlon of Discharge (RAPID) routing scheme developed by David et al. (2011). RAPID is a vector-
based river network routing scheme which makes it substantially more computationally efficient than
conventional grid-based routing schemes. RAPID uses a matrix-based version of the Muskingum method
to calculate flow and volume of water in all reaches of a river network. We used river network data from
the MERIT Hydro hydrography database (Yamazaki et al., 2019) which is based on the latest elevation
data (MERIT DEM; Yamazaki et al., 2017) and water body datasets (G1IWBM, GSWO, and
OpenStreetMap), and contains in total ~3.2 million river reaches globally. The MERIT DEM (90-m
resolution) combines the NASA SRTM3 DEM, JAXA AW3D DEM, and Viewfinder Panoramas' DEM,
with NASA forest height data, and corrects for bias, stripe noise, speckle noise, and tree height bias. The
river network for the Eastern Nile Basin is shown in Figure 7, along with the details in the eastern sub-
basins. To account for the non-linear flow dynamics and responses to rainfall, a variable flow velocity
method based on Manning's equation was adopted, where river bed slope and Manning's channel
roughness were parameterized as a function of topography, sinuosity, bedrock material, etc. The hydraulic
radius was estimated using a set of pre-defined channel trapezoidal shapes varying as a function of stream
order and calculated streamflow at each model time step.
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Figure 7. Maps of the RAPID vector-based streamflow routing network based on the
MERIT/HydroSheds database for (left) the Eastern Nile basin, and (right) zoomed in on the Tekeze-Setit-
Atbara and Abay-Blue Nile sub basins. River reach colors are dependent on stream order.
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2.2. Development of Climate and Hydrological Forecasts

2.2.1. Existing sources of forecasts

Climate forecasts are taken from a range of climate models which provide spatially
distributed forecasts of a range of physical variables at relevant time scales (sub-daily and daily
resolution for at least 6 months). These criteria are based on the fact that the proposed EN system
needs to provide forecasts across the basin, at different time scales, and that improved forecasts
are likely to be obtained by merging multiple models rather than relying on a single model. This
is advantageous compared to statistical forecasts, which are generally developed only for specific
forecast regions or points, and are for aggregated (e.g. seasonal rainfall) or very specific (e.g.
start of season) metrics, and so do not provide the flexibility required. Using climate model
forecasts, as opposed to statistical forecasts, also provides the opportunity to diagnose the
forecasts and their skill, as they provide related physical quantities, such as atmospheric
variables.

Candidate climate models that have been considered are from a range of climate centres and
forecast projects that have been developed and made available at a range of time scales (Table
1). In addition to the skill of the model forecasts, criteria for choosing a set of models is based on
their resolution (space and time), availability of hindcasts (historic forecasts) to evaluate their
skill, and availability of forecasts operationally. Ideally, a model will provide at least daily data
for precipitation and temperature, at a spatial resolution of no coarser than 1.0° (100km), have at
least 20 years of hindcast data and be available operationally.

We have worked with the models listed in Table 1 previously and have experience in their
utility and skill characteristics (Yuan et al., 2015; Wanders et al., 2019) and merging them
seamlessly across time (Yuan et al., 2014). We have used the North American Multi-Model
Ensemble phase 1 (NMME-1) previously (e.g. Yuan and Wood, 2012; Yuan et al., 2013a,b,c;
Kam et al., 2014; Yuan et al., 2014; Yuan et al., 2015; Thober et al., 2015) and this was a core
part of the AFDM seasonal forecasts (Sheffield et al., 2014). The NMME-1 only provides
monthly data, and so is less suitable for forecasts of sub-seasonal metrics (e.g. probability of dry
spells, start of the rainy season, etc) and for hydrological forecasting as the hydrological model
requires daily climate data. The latest phase 2 version (NMME-2), does provide sub-daily
information that can resolve the key intra-seasonal events and be used to drive the hydrological
model without any downscaling, but currently does not do so operationally and so is not suitable
for the proposed demonstration of an operational EN system. A further set of climate models is
available from the EU Copernicus Climate Service (C3S) implemented by the European Centre
for Medium range Weather Forecasting (ECMWF), which consists of five European models that
have been run in a consistent way and the data are provided on a consistent grid and format.
Forecasts are provided for daily and sub-daily variables and the forecasts are available as
hindcasts and operationally. We have previously used a subset of these models to develop a
demonstration hydrological seasonal forecasting system for Europe (Samaniego et al., 2019) and
have evaluated their skill across a range of metrics and scales across this continent (Wanders et
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al., 2019). Given their availability operationally and daily resolution, we have selected the
European set of models for the EN system. Note that all products are freely available. The
Copernicus products are freely available for non-commercial use.

Table 1. The sets of forecast models considered.

Model set Source Spatial Temporal Lead time Hindcast period
Resolution Resolution
Dynamical models
NMME], 2 NMME Project 1.0° Monthly 1-12 months ~1982-2010
(NMME-1), sub-
daily (NMME-2)
Copernicus C3S  Copernicus Climate 1.0° Sub-daily 1-7 months ~1993-2016
Data Store (CDS)
Statistical/climatological models
Statistical As available Aggregated' Generally ~1-3 months Various®
monthly/seasonal
ESP MSWEP, MSMet 5km Daily 1-12 months 1979-2018

'Forecasts are for an aggregated spatial area such as a river basin.
The hindcast period for statistical models depends on the record length of the contributing data.

A benchmark to evaluate the climate forecasts against is climatological forecasts (also known
as Ensemble Streamflow Prediction, ESP) which is a standard approach to hydrological
forecasting that is based on randomly sampling years from the historic observational record to
form an ensemble of forecasts. This type of forecasting can also be conditioned on states of the
climate that are known to be associated with wetter or drier conditions in the region (e.g. the El
Nino Southern Oscillation (ENSO)). For example, if the current year is experiencing El Nifio
type conditions, then only historic El Nifio years are sampled.

2.2.2. Evaluation of Climate Forecasts

Table 2 provides details of the five climate models in the ECMWF model ensemble. We
evaluate the models for a common forecast length of 180 days (6 months) and hindcast period of
1993-2016. The forecasts are made at the model’s native grid, but are provided by ECMWF on a
slightly reduced 1.0° grid, globally. We evaluate the models against gridded observational data:
precipitation is from the 0.1° resolution Multi-Source Weighted-Ensemble Precipitation
(MSWEP) dataset (Beck et al., 2017a,b, 2019); temperature is taken from the 0.05° Multi-Source
Meteorology (MSMet) dataset. The climate forecast data are interpolated to the observational
resolution by simple bilinear interpolation. Note, that we bias-correct the climate model forecasts
for the hydrological modeling at the 0.05° grid of the proposed EN forecast system (see section
2.4).

MSWEP has been evaluated globally against other similar gridded precipitation products and
outperforms them in terms of 1) comparison with available precipitation gauges (for uncorrected
gridded products where no gauge data are included directly), and 2) comparison with streamflow
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+1 (609) 608-0561 | www.princetonclimate.com

13



NILE BASIN INITIATIVE

INITIATIVE DU BASSIN DU NIL

gauges when used to force a hydrological model for the gauge-corrected version (Beck et al.,
2017a,b, 2019). The uncorrected version performs well against precipitation gauges for the
wetter upper part of the EN basin, but with lower performance over the lower part of the EN
region in terms of the 3-day mean correlations, although with higher performance for monthly
correlations(Beck et al., 2017a,b). The poorer performance in the lower part is typical of other
gridded products (reanalysis and satellite) and is likely because the region is so dry and the little
precipitation that does fall is highly variable in time and space (Beck et al., 2017a,b).The gauge
corrected version of MSWEP that is used in the EN forecast system incorporates data from 15
available gauges across the EN basin that are determined to have sufficient quality (out of about
30 gauges available in total), and therefore removes much of the error in the uncorrected version.

Table 2. ECMWF European forecast models and their attributes.

Model Forecast Forecast Hindcast Forecast Hindcast Hindcast Spatial
length (days) initialization initialization ensemble ensemble period resolution

dates dates members members

ECMWF 215 1" of month 1% of month 51 25 19812016  36-80 km

UKMO 215 Each day of 1%, 9™ 17", 2 7 19932016  0.83° X
month 25" 0.56°

Meteo- 215 1" of month 1% of month 25 24 19932016  0.5°

France

DWD 180 1" of month 1% of month 50 30 1993-2017  ~100 km

CMCC 180 1 of month 1% of month 50 40 1993-2016  ~I°

Model skill is evaluated in multiple ways at the monthly scale and for a set of drought
metrics. Evaluations at the monthly scale are done in three ways: 1) mean seasonal cycle
(climatology) to assess the overall forecast bias; 2) correlation over the whole hindcast period to
quantify how well the forecasts follow the observed variability; and 3) correlation of anomalies
over the whole hindcast period to quantify how well the forecasts replicate the observed
variability after removal of the mean seasonal cycle (which otherwise inflates the skill). For (2)
and (3), results are shown for all forecast target months, and for selected target months in the wet
season. Results are shown averaged over the entire EN basin, the three main sub-basins of the
lower part of the EN basin (Abay-Blue Nile, Baro-Akobo-Sobat-White Nile, and Tekeze-Setit-
Atbara) (see Figure 7), and for each grid cell as correlation maps. The skill of the models is
considered for different lead times (how far in advance the target month or season is forecast)
from 1 to 6 months. We focus on all lead times, from 1-6 months, and summarize skill in terms
of correlation as a function of lead time and target month. All monthly evaluations are done
using the ensemble mean for each model, which facilitates the evaluations and their
interpretation, but we also evaluate and show the uncertainty around the mean from the range of
individual ensemble members.
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Figure 7. Map of the EN basin and sub-basins.

Model skill is also evaluated for meteorological drought using the Standardized Precipitation
Index (SPI), and for specific historic drought events, based on each model’s ensemble mean and
full ensemble. The SPI is a well-used meteorological drought index that is the recommended
index by the World Meteorological Organization (WMO; McKee et al., 1993). We compare the
SPI from the model forecasts with the MSWEP observational dataset over a range of time scales
(1, 3, 6, and 12 months), which are designated as SPI-1, SPI-3, SPI-6, and SPI-12. Standard
forecast metrics are used, including hit, miss and false alarm rates for drought events that are
based on a 2x2 contingency table. Hit rates are also called “probability of detection” and
represent the percentage of events that are correctly forecast, compared to all observed events.
Miss rates are the complement of this, i.e. the percentage of events that were not forecast. False
alarm rates are the percentage of non-events that were forecast as droughts. These metrics are
calculated as follows: define a as the number of events when drought occurs in both the forecast
and observation, b as the number of drought occurrences in the forecast but not in the
observation, and ¢ for when drought occurs in the observation but not in the forecast. Then, the
hit rate is a/(a+b), and the false alarm ratio is b/(a+b). These are calculated for each ensemble
member and then aggregated across the ensemble.
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Skill of the forecasts of drought events is also evaluated in probabilistic terms taking into
account the uncertainty in the forecasts from the individual model ensemble members using the
Brier Score (BS), which measures the average square error of a probability forecast. This is
equivalent to the mean square error of a deterministic forecast, but the forecasts are given in
probabilities (i.e the fraction of ensemble members that forecast the drought): BS =

iZNz . — 0;)?, where N is the number of months, o; is the binary indicator for the observations
N &i=1V1 i ry

(1 if the event occurs; 0 if the event does not occur), and f; is the probability of occurrence for the
forecast (fraction of ensemble members).

2.2.3. Development of a Multi-model Ensemble

Finally, we demonstrate the potential for improving the forecast skill by combining forecasts
from individual models. As noted in the introduction, model averaging will generally lead to
improved skill and we take this further by combining individual models based on their skill, such
that a more skillful model will contribute more to the multi-model ensemble. These results are
compared to simple model averaging. In the results section, we first show the improvement in
skill from an equally weighted multi-model mean (MMM, unweighted mean), and then show
how this can be improved further by taking into account the skill of individual models (MMWM,
weighted mean). The weights applied to each model are calculated based on the covariability of

individual model forecasts with the observational data, such that w,; = ST i C'ip -, where w,; is the
c=1 Cl

weight given to model ¢ at grid cell i, and p is the correlation between the model and
observation.

We are focused on drought and potentially other extremes, which have timescales of monthly
or less (e.g. rapid intensification or recovery), and averaging forecasts (unweighted or weighted)
does not retain the inherent uncertainty in forecasts and smooths out the actual day to day
variations that happen as part of weather variability. This makes it difficult to represent drought
evolution and other extremes properly. Averaging the climate forecasts also makes it difficult to
develop the daily forcings for the hydrological model. Therefore, the development of a multi-
model ensemble mean will be used to demonstrate the improved skill, whilst in a practical sense,
the multi-model ensemble will be implemented in an operational system as a set of individual
forecasts that are sub-sampled from the individual forecasts of each model based on the skill
weighting of each model. The multi-model ensemble will therefore contain more ensemble
members from a skillful model compared to a less skillful model.

2.2.4. Development of Hydrological Forecasts

The hydrological forecasts are based on output from the HBV+RAPID hydrological
modeling framework. This framework couples the HBV hydrological model with the RAPID
river routing model to provide forecasts of hydrological variables (e.g. soil moisture, runoff,
evapotranspiration, streamflow). The HBV model is run at daily and 0.05° resolution over the
whole Nile basin. Runoff from the HBV model is routed down the river network by the RAPID
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model, which simulates streamflow on a very high definition vector river network with
predictions made at 69,744 river reaches. Modeling the whole of the Nile basin is necessary to
predict flows from the White Nile into the EN basin. An historic simulation of HBV+RAPID has
been run for 1979-2018, forced by the MSWEP precipitation and MSMet meteorology data, and
this forms the observational historic benchmark for comparing the hydrological seasonal
forecasts. This dataset is described in the report for Component 1 (Part 2).

The hydrological forecasts are forced by downscaled and bias-corrected climate model
forecasts for the hindcast period (1993-2016), and these are evaluated against the observational
simulation to determine the skill of the forecasts for different hydrological variables, lead times,
and for the different climate models. Downscaling of the daily climate forecasts is carried out
using simple bilinear interpolation from the 1.0° resolution of the climate model data to 0.05°.
Bias-correction is then carried out to remove the biases in the precipitation and temperature
forecasts at the daily, 0.05° scale. Bias-correction of temperature is done by simple removal of
biases on a monthly basis, by developing correction factors for each 0.05° grid cell and each
month of the year as BC,,; = Ty mi - Te.mi » Where BC is the bias correction factor for month of the
year (m) and grid cell (i), and 7 is the temperature for the observation (o) and climate model (c).
The bias correction factor is added to each daily temperature value in the forecast to remove the
bias. For precipitation, empirical cumulative distribution functions (CDF) are developed for each
grid cell and month of the year for the observation and for the forecast, and these are used to map
the forecast quantile of each day to the equivalent quantile for the observation. Mathematically,

this is equivalent to: Py ; = F, (Fc,m,i(PC,d,i)), where P is the precipitation for day (d) and F

om,l
is the CDF for the month and grid cell. This approach is preferable over a simple monthly scaling
approach (as done for temperature) as it reduces the overestimation of the number of low rainfall
days in the climate models.

Each forecast is initialized on the first of the month using the hydrological states (soil
moisture, canopy storage, channel storage) of the previous day taken from the historic
observational simulation. The simulation is run for 6 months using the downscaled and bias-
corrected climate forcing data from each of the 5 climate models and their ensemble members,
for each year and month in the hindcast period (1993-2016). This is equivalent to 36,288
hindcast simulations, however, as there are missing data in the CDS archive, the actual number
of the simulations is about % of that. The forecasts are evaluated in the next section against the
observational historic simulation. They are also evaluated against a benchmark simulation based
on ESP.
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3. Results

3.1. Historic Hydrology Evaluations

The historic reconstructed hydrology was evaluated against available observations, namely streamflow
data from within the basin, and soil moisture observations globally (as there are no such observations
within the Eastern Nile basin as far as we can tell).

3.1.1. Streamflow

Readily available observed streamflow data is limited for the Eastern Nile Basin (for example from the
Global Runoff Data Centre), and so evaluations are necessarily focused on records for a handful of
stations available from ENTRO and national agencies. Evaluations are carried out at daily and monthly
scale. Figure 8 shows the location of nine stations with available data. Results at daily and monthly scale
are shown in Table 3. The results show reasonable performance with correlations ranging from 0.4 to 0.83
at the daily scale and 0.46 to 0.92 at the monthly scale. Note that no direct calibration of the model was
carried out in the basin because of the lack of long-term observed data across the basin, and the
simulations are reliant on the suitability of the regionalized parameter values described above. Future
work will potentially focus on improving model performance via further detailed evaluation and
calibration against additional observed data if available. This will certainly reduce biases in the model,
and may contribute to improvements in the other statistics.
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Figure 8. Location of streamflow gauging stations within the Eastern Nile Basin that are used to evaluate
the HBV+RAPID hydrological modeling system.

Table 3. Streamflow stations and model performance statistics. KGE is Kling-Gupta Efficiency (Kling et
al., 2012), CC is correlation coefficient, a is variability ratio, and P is bias ratio.

Location Daily Model Statistics Monthly Model Statistics
Station Lat Lon Period KGE CC a B KGE CC a B
Baro nr Gambella 8.23°  34.57° 1980-2009 0.59 0.83 1.17 1.34 072 092 117 12
Gilo nr Pignudo 7.62°  34.27°  1980-1990 -0.5 073 246 121 -049 087 248 1.17
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Sor nr Metu 8.32°  35.60°  1980-2006 071 076 0.87 1.09 084 092 087 097
Gebba nr Suppe 8.48°  35.65°  1980-2005 0.44 0.7 147 1.03 049 0.83 148 092
Abbay nr Bahidar 11.60° 37.41° 1980-2002 -0.12 04 148 1.82 0.02 046 148 1.67
Wechit nr 10.08° 38.78° 1997-2010 -49.46 0.59 5144 2.18 -49.11  0.68 51.1 1.97
AlemKetema

Anger nr Nekemet 9.43°  36.52°  1994-2004 033 066 143 1.4 047 076 142 1.21
Birr nr Jiga 10.65° 37.38°  1980-2002 0.67 069 091 0095 085 088 091 1
Muger nr Chancho 9.30°  38.73°  1980-2002 052 075 0.6 0.91 059 092 06 092
Tekezze nr Yechi 13.35°  38.75°  1994-2003 0.61 07 087 0.79 075 086 0.88 0.83
Upper Baro nr 8.00°  35.00°  1988-2007 037 054 058 092 041 066 057 0.7
Masha

3.1.2. Soil moisture

We assessed the temporal dynamics of the HBV model forced by the MSWEP precipitation against 14
state-of-the-art global surface soil moisture products, including five based on satellite retrievals, four
based on “open-loop” models, and five based on models that assimilate satellite observations. As
reference, we used in-situ soil moisture measurements at approximately 5-cm depth from 949 probes
globally, due to a lack of measurements in the Eastern Nile Basin. Figure 9 presents the results of our
assessment. Among the three single-sensor satellite-based products (AMSR2, SMAPL3, and SMOS), the
L-band-based SMAPL3 performed best by a significant margin. Among the two multi-sensor satellite-
based products (TC and ESACCI), the triple collocation-based product TC achieved superior performance
and outperformed SMAPL3 as well. The performance ranking of the four open-loop models (GLDAS,
HBV-ERAS, HBV-IMERG, and HBV-MSWEP) is consistent with previous precipitation dataset
evaluations (e.g., Beck et al., 2017b, 2019¢c). HBV forced with MSWEP precipitation achieved the best
performance not just among the open-loop models, but among all 14 products, justifying our choice of
hydrological model and precipitation dataset for the present application. The five models that assimilate
satellite observations (GLEAM, SMAPL4, HBV-ERAS5+SMAPL3, HBV-IMERG+SMAPL3, and HBV-
MSWEP+SMAPL3) generally outperformed the open-loop models and exhibited a smaller spread in
performance.
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Figure 9. Performance of surface soil moisture products in terms of daily temporal correlation for the

period May 25, 2015 to September 29, 2019. The left and right edge of the box represents the 25th and
75th percentile values, respectively, the line in the box represents the median value, the whiskers show
the rest of the distribution (except outliers), and the grey points depict the outliers.
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3.2. Drought Analysis

Drought is defined in general as a deficit in water relative to some threshold, and can be estimated for
meteorological, agricultural and hydrological conditions. Typically a drought index is used to quantify the
characteristics of drought, usually in terms of its severity relative to a drought threshold. There are
hundreds of different indices that have been proposed for different types of drought, regions and
applications. A discussion of these is given in various reviews (e.g. Mishra and Singh, 2010; Sheffield
and Wood, 2011; Zargar et al., 2011). We focus on standard indices to represent each of these drought
types: the Standardized Precipitation Index (SPI) at each grid cell for meteorological drought, soil
moisture percentiles (SMp) at each grid cell for agricultural drought, and standardized flow volumes
(StdVol) at each river reach for hydrological drought. These indices are used frequently for research and
applications, have a long history of evaluation, and are relatively straightforward to calculate and
interpret. The SPI is the recommended index for meteorological drought by the World Meteorological
Organization (WMO). The SMp has been used by many authors to understand drought variability and the
impacts of climate change (e.g. Sheffield and Wood, 2008; Berg and Sheffield, 2019). Standardized flow
volumes are a recommended index for hydrological drought (van Lanen et al., 2004). As no index can by
itself represent all aspects of drought, especially in the diverse and variable climates of the Eastern Nile
basin, the use of these three indices provides good coverage of the variability of drought and its
propagation through the hydrological system, from precipitation, to soil moisture, to streamflow. Results
are presented here on agricultural and hydrological drought, as these have the most direct impacts on
agriculture and water resources, respectively.

3.2.1. Drought variability

We first show average drought conditions as a monthly time series over the whole Eastern Nile Basin.
Figure 10 presents the time series of soil moisture for the historic period, 1980-2018. Figure 10 also
shows the area in drought based on the SMp, with a threshold of the 20th percentile. Key events are
identified including droughts in 1983/84, 1991/92, the early 2000s, 2008/09 through to 2013, and most
recently in 2015 and 2017 for the whole EN basin. The most extensive drought events reach a peak
coverage of the basin of about 30% at the monthly time scale. Figures 11a-c present the same analysis but
for the (a) Abay-Blue Nile, (b) Baro-Akobo-Sobat-White Nile, and (¢) Tekeze-Setit-Atbara sub-basins.
Again, events in 1983/84, 1991/92 are seen in the time series, but with weaker events during the mid
2000s. The last 10 years indicate generally drier than normal conditions (except for around 2014 and
2018) across these sub-basins.

Bayissa et al. (2018) and Kebede et al. (2019) analyzed drought over the upper Blue Nile using a range of
indices and datasets including those based on soil moisture. Bayissa et al. (2018) looked at the period
1970-2010 for a set of six physical drought indices, and compared with impact data from the Emergency
Events Database (EM-DAT), the international disaster database (http://www.emdat.be/database). EM-
DAT identifies several events including 1983-1984, 1994-95, 2003-2004 and 2009. Kebede et al. (2018)
further identified 1981 and 2015 as major drought events, based on summertime values of precipitation
and soil moisture. 1983-84 is also noted here as one of the severest events on record over the EN basin,
and most other sub-basins. The 1994-95 drought was likely part of a longer-term 1989-1995 drought,
which is replicated here for SMp in most regions, including the Abay-Blue Nile sub-basin (Figure 11a).
2003-2004 is depicted here as a severe event over some sub-basins (Figures 11a-c) and 2009 is a large
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event in most regions. 2015 is also picked up by SMp in some regions but 2014/2015 is a neutral/wet year

in other regions. 2016-17 is quite a strong drought period in the Baro-Akobo-Sobat-White Nile sub-basin
(Figure 11c).
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Figure 10. Time series of (top) areal average soil moisture percentile, and (bottom) area in drought for a
threshold of the 20th percentile for the Eastern Nile Basin.
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Figure 11a. Time series of (top) areal average soil moisture percentile, and (bottom) area in drought for a
threshold of the 20th percentile for the Abay-Blue Nile sub-basin.
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Figure 11b. Time series of (top) areal average soil moisture percentile, and (bottom) area in drought for a
threshold of the 20th percentile for the Baro-Akobo-Sobat-White Nile sub-basins.
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Figure 11c. Time series of (top) areal average soil moisture percentile, and (bottom) area in drought for a
threshold of the 20th percentile for the Tekeze-Setit-Atbara sub-basin.
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3.2.2. Drought risk

Drought risk is quantified based on the frequency of event occurrence. Figures 12-15 show maps of
frequency and return period based on SMp for different drought durations (1-3, 4-6, 7-12 and >12
months duration), and for different drought thresholds (10 and 20th percentiles). Return periods are
estimated based on the drought frequencies over the 39 year time period (1980-2018), and are quite
uncertain for the low risk events which are infrequent or do not occur in the time period. Each of these
types of drought will likely have different impacts due to their duration, severity and timing. Shorter
duration droughts (1-3 months) are more frequently occurring (low return period and therefore high risk),
and most prevalent in the upper basin where hydrological variability is higher in the relatively wetter
climate. In this region, for the 10th percentile threshold (Figures 12-13), the number of droughts exceeds
10 events over the ~39 year time period (1980-2018), which is equivalent to about one event every four
years. The frequency reduces with increasing drought duration (e.g. 4—6 months, and 7-12 months) with a
maximum of about 3-5 events in total (or an approximate return period of 7-13 years). The area of
maximum frequency shifts northwards with increasing drought duration as driven by the wet to dry
gradient and associated stronger climate persistence. Droughts of 12 or more months in duration are
restricted to a few locations in the northern, very dry part of the basin. Droughts defined by the less severe
20th percentile threshold (Figures 14-15) occur more often by definition, with 1-3 month duration
droughts occuring up to around every two years in the southern part of the basin (Figure 15).
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Figure 12. Frequency of different duration drought events, based on soil moisture percentiles for a 10th
percentile threshold over the historic period of 1980-2018. Drought events are identified at 1-3, 4-6, 7-12
and >12 months duration.

30N A

27N

24N -

21N

18N -

15N -

12N -

9N

6N

3N

25

1-3 months 4-6 months 7-12 months

I3

27N
24N {
21N
18N 7
15N {
12N

N |

BN 1

3N

Return Period (years) Return Period (years) Return Period (years)

- > -
0 5 10152030 0 5 10152030 0 5 10152030

Figure 13. Same as Figure 12 but for the return period.
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Figure 14. Same as Figure 12 but for the 20th percentile threshold.
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Figure 15. Same as Figure 13 but for the 20th percentile threshold.

Hydrological drought is presented and analyzed slightly differently to focus on the daily time scale, and
for the number of days that are exceeded for 80% of the time (Figure 16) and the cumulative deficit below
this exceedance value (Figure 17). The results are also shown for three decadal periods to highlight any
changes over time. The drought duration analysis indicates a maximum in the middle part of the basin (>
85 days), where there is the largest convergence of flows and the climate tends to be less variable. There
is a slight increase in the area of highest durations (> 85 days) over time, which is consistent with the
evolution of conditions for the Tekeze-Atbara and Blue Nile regions seen previously. Hydrological
droughts in the southernmost and eastern part of the basin are less than about 50 days, and as low as less
than 30 days in the Victoria basin. The cumulative deficits (Figure 17) show a clear north-south gradient,
with higher deficits in the headwaters of the basin and the highest deficits along the main stem in absolute
terms.
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Figure 16. Hydrological drought duration (days) for flows exceeded 80% of the time, shown for three
near-decadal time periods between 1979 and 2013.
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Figure 17. Cumulative daily streamflow deficit (m ) computed from the flow duration curve as flow
exceeded 80% of the time, and shown for three near-decadal time periods between 1979 and 2013.

3.2.3. ENSO impacts

The impact of ENSO on soil moisture is shown in Figure 18. ENSO is known to impact across the basin,
in particular over the Ethiopian Highlands in all seasons (e.g. Camberlin and Philippon 2002; Seleshi and
Zanke, 2004; Diro et al. 2008; Abtew et al., 2009; Segele et al. 2009) and more generally across the Nile
basin (Awange et al., 2014), although the sign and strength of the relationship varies with region and
season (Gleixner et al., 2017). Climate model experiments show that up to 50% of the summertime
(Kiremt) rainfall anomalies over the Ethiopian Highlands is related to variability of SSTs in the equatorial
Pacific.

Figures 18a-c show composite maps of SMp for neutral, strong El Nifio and strong La Nifia years, which
are shown in Table 4. The SMp composite is calculated for 6-month periods (Oct-Mar for the ENSO year
and the following year, Jan-Jun for the following year and Apr-Sep for the following year). For example,
for the strong El Nifio of 1982-83, SMp for Oct-Mar is averaged over Oct-Dec 1982 and Jan-Mar 1983;
the Jan-Jun value is calculated over Jan-Jun 1983 and so on. The values for 1982-83 are then averaged
with the values for all other strong El Nifio years to form the composite.

ENSO and neutral years are defined using the NOAA CPC Oceanic Nifio Index (ONI)
(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php), which is the 3
month running mean of ERSST.v5 SST (Huang et al., 2017) anomalies in the Nifio 3.4 region (5°N-5°S,
120°-170°W). Years are classified based on identification of events defined as 5 consecutive overlapping
3-month periods at or above a SST anomaly threshold of +-0.5°C, with strong events defined with a
threshold of +-1.5°C.
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Table 4. Years classified as neutral, strong El Nifio and strong La Nifia, as based on the NOAA CPC
ONI.

Neutral 1980 1981 1985 1989 1990 1992 1993 1996 2001 2003 2012 2013 2019
Strong El Nifo 1957 1965 1972 1982 1987 1991 1997 2015
Strong La Nifia 1973 1975 1988 1998 1999 2007 2010

The impact of ENSO is reasonably clear across the basin, with El Nifio years related to generally lower
SMp in the middle and southwestern parts of the basin, and La Nifia years associated with wetter
conditions, mostly in the middle part of the basin. There is a strong dry signal in El Nifio years in the
lower parts of the three sub-basins (Abay-Blue Nile, Baro-Akobo-Sobat-White Nile, and Tekeze-Setit-
Atbara sub-basins), and a less well defined wetter signal during La Nifia years. The signal in the
Ethiopian highlands is less clear, but there is a tendency for the composites to be wetter in La Nifia years,
which is consistent with previous studies. The El Nifio signal is less obvious. The strength of the ENSO
signal across the basin diminishes from ONJDFM through to JFMAMJ and AMIJJAS, which reflects the
tendency of ENSO and its teleconnections to be strongest in the boreal winter. There is a wet-dry signal
with El-Nifio/La-Nifia in the Nile Delta, although it should be noted that this is based on modeled SM and
not the influence of the Nile River on the delta wetlands.

Princeton Climate Analytics, Inc. * 134 Nassau St.  Princeton NJ 08542
+1 (609) 608-0561 | www.princetonclimate.com

32



ENTRO

NILE BASIN INITIATIVE
INITIATIVE DU BASSIN DU NIL

Neutral Years El Nino Years La Nina Years
ONDJFM ONDJFM ONDJFM

30N 30N 30M -

27N - 27N 27M A

24N A 24N A 24N A

21N 21N 1 21N

18N - 18N A 18M

15N - 15N 15N A

12N A 12N A 12N A

ON ON OM -
6N 6N - 6N
3N - . 3N : ; 3N : ;
25 30 35 40 25 30 35 40 25 30 35 40

SM percentile SM percentile SM percentile

20 AN AN BN an 7N an 20 I AN BN &N 7N 2N 20 AN AN BN AN 7N [N

Figure 18a. ONDJFM composite SMp over 1979-2018 for (left) neutral ENSO years, (middle) strong El
Niflo years and (right) strong La Nifa years.
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Figure 18b. JFMAMJ composite SMp over 1979-2018 for (left) neutral ENSO years, (middle) strong El
Niflo years and (right) strong La Nifa years.
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Figure 18c. AMJJAS composite SMp over 1979-2018 for (left) neutral ENSO years, (middle) strong El
Niflo years and (right) strong La Nifa years.

3.2.4. Potential drought exposure

This final section shows some preliminary analysis of exposure of populations and agricultural lands to
drought hazard. Exposure is one component of the risk of impacts, which also includes the vulnerability
(or conversely the resilience) of sectors and populations, but does provide a first order estimate of
potential risks. Exposure here is based on 1) the location and number of people exposed to a certain
duration drought frequency, and 2) the location and area of agricultural land (crops) exposed.

Figure 19 shows the the population of Eastern Nile Basin, the intensity of cropland (crop area
percentage), and the estimated return period frequency of 1-3 month droughts (with a 20th percentile
threshold). The blue areas of the drought map in Ethiopia indicate an approximate return period of 2 years
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(~20 events over the 39 year period), which could be considered high risk. There is high overlap between
areas of dense population and agriculture, and high short-term drought risk, especially in the districts
south of Lake Tana (West/East Gojjam and AgewAwi). The intense region of cropping in southern Sudan
and South Sudan are exposed to slightly lower risk of short-term droughts but have higher exposure to
medium to long-term (7-12) month droughts (see Figure 14). They are also exposed to high impacts
during strong El Nifio events (see Figure 18) although this is most prominent in the dry season of the
boreal winter (ONDJFM) when impacts will generally be lower than in the rainy season of AMJJAS.

Population Crop Area Drought Risk
(1000s/km?2) (Rp: 1-3mo)
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Figure 19. (left) population of the Eastern Nile Basin estimated for 2019 from the Worldpop (2018)
dataset, (middle) percent crop cover based on the Copernicus Land Cover Service product (Buchhorn et
al., 2019), and (right) return period of 1-3 months duration droughts based on soil moisture percentile
index (SMp) and a 20th percentile drought index.

0 20 40 60 80 100 0O 2 5 10 15 20 30

The breakdown of exposure by drought event duration and risk level is shown in Figure 20. Here, risk
categories are defined in terms of the estimated return period with low: Rp> 10 years; medium: 3 <Rp<
10 years; high: Rp< 3 years. The spatial variation in risk for short-term drought is shown in Figure 19 and
in Figure 15 for all drought duration types. The exposure under different drought risk categories depends
on the duration, with generally higher exposure to low risk and longer duration droughts. Conversely,
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there is lower exposure to medium risk droughts (orange bars) for medium (4-6 months) to long-term (7-
12 months) droughts, but higher exposure for short term (1-3 months) droughts. There are no areas under
high risk of medium (4-6 months) to very long droughts (> 12 months). The high-risk droughts are
limited to short-term (1-3 months) droughts, but the population exposed is about 36M, and the cropped
area is about 0.08M (80,000) km®.

Area under different drought risk categories Population under different drought risk categories
0 16 n 140
k] 8
s 4 = 120
12 100
& 1 5
g 2 80
= o8 3
o 3 60
< 086 o
40
04
0.2 20
0 0
1-3mo 4-8mo 7-12mo >12mo 1-3mo 4-6mo 7-12mo >12mo
Duration Duration
mrisk low w®risk med w®risk high mrisk low ®risk med ®risk high

Crop area under different drought risk categories

» 0.18
2
= 0.16
0.14
T 0.12
=
pu 0.1
2
< 0.08
Q.
2
S 0.06
0.04
0.02
0 | —
1-3mo 4-6mo 7-12mo >12mo
Duration

mrisk low ®riskmed ®risk high

Figure 20. Area, population and cropped area under different drought risk categories for different
durations with a 20th percentile threshold. Risk categories are defined in terms of the estimated return
period (shown spatially in Figure 16) with low: Rp> 10 years; medium: 3 <Rp< 10 years; high: Rp< 3
years.

3.3. Evaluation of Climate Forecasts

3.3.1. Seasonal Climatology

Figure 21 compares the EN basin mean seasonal cycle of observed precipitation from
MSWEP with that from the five climate models. Similar figures for the sub-basins are shown in
an appendix. Overall, the models reproduce the seasonal cycle of precipitation at all lead times.
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Most models overestimate the observed seasonal cycle, and more so in the wetter summer
months, except for the DWD model, which tends to underestimate in nearly all months and lead
times. The overall bias is least in the DWD model and highest in the CMCC model (see Table 5).
Although the biases tend to change with increasing lead time, they do not necessarily become
larger. For example, monthly precipitation amounts tend to decrease with increasing lead time in
the ECMWF model, but this can increase or decrease the bias depending on the month. This
indicates that the applied bias correction should be specific to each month. See section 2.4 for
details of the bias correction approach which is used to remove these biases.
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Figure 21. Precipitation monthly average climatological mean (1993-2016) averaged over the
EN basin for MSWEP and the five climate models, for leads 1-6.

Figure 22 shows the mean seasonal cycle of monthly average Tmax and Tmin averaged over
the EN basin for the observations (based on MSMet) and the five climate models. Similar figures
for the sub-basins are shown in the appendix. All models underestimate Tmax for all months and
the biases tend to be slightly larger in the dry season. Two models (ECMWEF, UKMO)
underestimate Tmin, and three models (Meteo-France, DWD, CMCC) overestimate Tmin.
Model CMCC has the least bias annually and model ECMWF has the largest bias for Tmax.
Models ECMWF, Meteo-France and DWD have the least bias annually for Tmin. Biases for the
EN basin at the mean annual scale are summarized in Table 5.

Tmax Tmin
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Figure 22. Tmax and Tmin monthly average climatological mean (1993-2016) averaged over
the EN basin for MSMet and the five climate models, for leads 1-6 months.

Table 5. Mean annual bias of the climate model lead-1 forecasts for precipitation, Tmax and
Tmin averaged over the EN basin.

Precipitation (mm) Tmax (°C) Tmin (°C)
ECMWF 158 -2.96 -0.95
UKMO 97.5 -2.41 -1.20
Meteo-France 145 -2.13 0.92
DWD -45 2.70 -0.95
CMCC 291 -1.95 1.28

3.3.2. Forecast Skill for All Months

Time series of forecast anomalies of precipitation from the ECMWF model for the EN
basin compared to anomalies of the observational data are shown in Figure 23 for 1993-2016
for a variety of lead times. Lead-1 forecasts represent the observed variability reasonably well,
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for example for the wet period around 1997/98 and dry period of 2005/06. The match between
the forecast and the observed data decreases with increasing lead time, although some extreme
years are still captured. The correlations between the forecast and observed time series at lead
times from 1-6 months are summarized for all models for monthly precipitation anomalies
averaged over the EN basin in Figure 24. The ECMWF model has the highest correlation for
lead-1 at 0.60, followed by Meteo-France, CMCC, UKMO and DWD. Correlations decrease
with lead time to within the range 0.0 to 0.3 for leads 2-5. The ECMWF model tends to have
higher correlations for all lead times.
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Figure 23. Time series of EN basin averaged precipitation monthly anomalies from MSWEP
(black line) and ECMWF forecasts (colored lines) for 1993-2016 for all months and (a) lead-1,
(b) lead-2 and (c) lead-3.
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Figure 24. Correlation between anomalies of forecasts and observed monthly precipitation
averaged over the EN basin, for 1993-2016 and lead 1-6 months for the five climate models.

Similar to Figure 23, time series of forecast anomalies of Tmax for the EN basin are
compared to anomalies of the observational data in Figure 25. This is for the UKMO model,
which is one of the better performing models for temperature. All lead forecasts represent the
overall warming signal including the decadal variations, and most of the monthly and inter-
annual variability in the anomalies. Lead-1 forecasts (Figure 25a) represent the observed
variability well, and as for precipitation, identify some extreme events, such as the cool event in
1997 and the warm event in 2006. Similar to the precipitation forecasts, the correlation drops
with increasing lead time, and the forecasts fail to match the observed variability at lead 3
(Figure 25¢).
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Figure 25. Time series of EN basin averaged Tmax anomalies from MSMet (black line) and
UKMO (colored lines) forecasts for 1993—-2016 for all months and for (a) lead 1 only, (b) lead-2
and (c) lead-3.

3.3.3. Forecast Skill for the Wet and Dry Seasons

The next series of figures summarizes the forecast skill for key target months, such as during
the main wet season and compares this to results for all months and the dry season. Figure 26
shows time series of lead-1 ensemble mean forecasts of precipitation anomalies from the
ECMWF model compared to the MSWEP observational data for June-July-August (JJA) and
January-February (JF). JJA and especially July-August is the peak of the wet season across most
of the EN basin (see Figure 21). JF is the peak of the dry season. The forecasts show modest skill
for JJA anomalies with correlation of 0.45, and higher skill for the dry period of JF, with
correlation of 0.8, indicating that forecasting the main wet season anomalies is challenging.
Figure 27 summarizes the skill of the ECMWF model for all months, and different seasons for
all lead times, showing that skill is highest for the dry season, moderate for all months combined,
and lowest for the wet season months.
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Figure 26. Time series of EN basin average seasonal precipitation anomalies of MSWEP and
ECMWEF lead-1 ensemble mean forecast for (a) June-July-August (JJA), (b) January—February
(JF), (c) March—-May (MAM), and (d) October—December (OND).
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Figure 27. Summary of correlations of EN basin average precipitation anomalies of MSWEP
versus ECMWEF forecasts for lead 1-6 for all month (Monthly), JJA, MAM, JF and OND.

3.3.4. Spatial Distribution of Forecast Skill

Figures 28 and 29 show correlation maps for monthly precipitation (Figure 28) and monthly
precipitation anomalies (Figure 29) for all months between the ensemble mean for each model
and the MSWEP observational data. The correlations for monthly precipitation are around 0.9
for much of the lower part of the EN basin where the seasonal cycle of precipitation is well
defined. In the drier parts of the basin in the north, the correlations are closer to zero, reflecting
the general lack of a well-defined seasonal cycle in these dry regions. Correlation values tend to
decrease with lead time, but remain relatively high in the lower part of the basin. The ECMWF
model has higher correlations overall, with Meteo-France tending to have the lowest values,
although these are still above 0.5-0.6 in the lower part of the basin.
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Figure 28. Correlation of the lead 1-6 ensemble mean forecasts of monthly precipitation for
each model with MSWEP.

Correlations are much lower for the monthly precipitation anomalies (Figure 29), and
decrease quite rapidly beyond lead-1. Again, the Meteo-France model shows the lowest
correlation values at lead-1. The UKMO and DWD models show the highest correlation values
at lead-1 in general. Although there is a sharp decline in correlation values beyond lead-1 for
most models, some models retain some skill at lead-2 and -3, for example the DWD model.
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Figure 29. Correlation of the lead 1-6 ensemble mean forecasts of monthly precipitation
anomalies for each model with MSWEP.

Figure 30 shows the spatial distribution of correlations for each model, but for specific key
seasons (MAM, JJAS, OND). OND is generally better forecast than other seasons, with JJAS
being well forecast by some models (e.g. DWD) and poorly simulated by other models (e.g.
CMCC). Again, the increasing gradient in skill between the drier north and wetter south is

evident.
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Figure 30. Spatial distribution of correlation between MSWEP and the five forecast models for
lead-1, for (a) MAM, (b) JJAS, and (c) OND average precipitation.
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Lead-1 forecasts of Tmax and Tmin for all models are shown in Figure 31. The gradient in skill
is reversed for these temperature variables, with very high correlations (> 0.9) in the drier
northern part of the basin, and values around 0.5-0.7 in the wetter lower part of the basin.
Correlations for Tmax are generally slightly higher than for Tmin in the lower part of the basin.
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Figure 31. Correlation of forecasts of Tmax and Tmin from the five models with MSMet
observations over 1993-2016 for lead-1.

The same analysis is shown in Figure 32 but for the Tmax and Tmin monthly anomalies,
which reveals a much more complex pattern of correlation values across the models. Correlation
values for the anomalies are much lower than for the actual monthly values, as expected and also
shown for precipitation. Some models have correlation values up to 0.6-0.7 in parts of the
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region, whilst other models show near zero, or slightly negative correlations. Visually, the best
performing model is the ECMWF model, followed by the UKMO model. The Meteo-France
model generally shows zero or negative correlation values across the basin.
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Figure 32. Correlation of forecasts of Tmax and Tmin anomalies from the five models with
MSMet observations over 1993-2016 for lead-1.

3.3.5. Summaries of Skill for the EN and Sub-Basins

The correlations are summarized for all models for precipitation, Tmax and Tmin anomalies
in Figure 33. For the EN basin, the ECMWF model has the highest correlation for precipitation
at lead-1 as mentioned above, followed by Meteo-France, CMCC, UKMO and DWD. Overall
the UKMO model performs the best for Tmax and Tmin, whilst Meteo-France does well for
Tmin at lead-1. For the sub-basins, the correlations decrease slightly for precipitation at all leads.
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For temperature, the correlations for the sub-basins are generally weaker for lead-1, but actually
increase for longer leads. For Tmin and some models, the correlations are above 0.3 for leads out

to four months..
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Figure 33. Summary of correlation between time series of forecast and observations of monthly
precipitation, Tmax and Tmin anomalies for the EN for 1993-2016, and lead 1—-6 months.

3.3.6. Evaluation of Drought Forecasts based on SPI

Time series of EN basin average SPI for MSWEP and the five models for lead-1 are shown
in Figures 34-37. SPI values below zero (red shading) are considered to be drier than normal,
and above zero (blue shading) wetter than normal. A value of -1.0 is often considered to be a
threshold for drought in the literature.

The differences in the variability as represented by the different SPI time scales is evident,
with high frequency variability in the SPI-1 (Figure 34) through to long-term decadal variability
in the SPI-12 (Figure 37). Historic drought events are clearly shown in the MSWEP dataset for
SPI-3 and longer, highlighting drought events in the early 2000s, 2009, 2011/2012 and 2015, but
also wet events in 1995, 1997/98 and 2007. The climate models can represent many of these
events, but do fail to capture the magnitude and timing of some large drought events or even
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identify droughts when there was none (e.g. UKMO model forecasts a large drought in 2007
whilst the MSWEP shows wet conditions).

The corresponding correlation values for each of the models and each SPI time scale are
shown in Figure 38. The correlations peak at about 0.6 and are highest for the ECMWF model,
which is consistent with the monthly precipitation evaluations, but are also high for the Meteo-
France model, despite its skill being relatively low for monthly precipitation. The other models
have slightly lower correlation values. Correlations generally increase with increasing SPI time
scale, particularly for the DWD model, which is expected as the forecast anomalies are smoothed
out with increasing time scale. The UKMO model alone shows a decrease in correlation values
with increasing SPI time scale.
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Figure 34. Time series of EN basin average SPI-1 for MSWEP and time series of lead-1
forecasts from the five models.
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Figure 35. Same as Figure 34 but for SPI-3.
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Figure 37. Same as Figure 34 but for SPI-12.
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Figure 38. Correlation of MSWEP and the five models for lead-1 forecasts of SPI-1, -3, -6, and -
12.
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3.3.7. Evaluation of Individual Drought Events

Here we evaluate the forecast skill of the models for SPI for individual drought events. We
use the UKMO and ECMWF models to show examples of skill assessments for SPI-1 and then
summarize across models and basins in Table 6. Results are shown for different drought
severities: moderate drought (SPI <-1.0), severe drought (-1.0 > SPI >-1.5) and extreme drought
(SPI <-2.0). Figure 39 shows the number of lead-1 ensembles of the UKMO model that forecast
correctly an observed drought month based on SPI-1. A perfect forecast for the UKMO model
would show all seven ensemble members in drought, as this is the ensemble size of this modelfor
its hindcasts. Note that this analysis only looks at Aits when the model forecasts the observation
correctly, and does not consider false alarms when the model forecasts a drought when there was
none in the observations (all statistics are shown later in Table 6). The model forecasts identify
drought in at least one ensemble member for about 50% of the drought months, meaning that it
fails to identify drought at all in the other 50%. Of those drought events that are forecast by at
least one ensemble member, the total number ranges from 1 to 4, with a mean of 1.1 (16%)
members for all observed events. For severe and extreme drought, the number of observed events
decreases as expected, but the mean number of members that forecast any drought increases to
1.7 (24%) and 2.4 (34%), respectively. Figure 40 shows the results for the ECMWF model,
which forecasts moderate drought in at least one member in 93% of events, although ECMWF
has a much higher ensemble size (25) in its hindcasts. The mean percentage of members that
forecast moderate, severe, and extreme drought is 19, 14, and 22%, respectively, which is
generally lower than for the UKMO model.

Summary statistics for all models are provided in Table 6 in terms of the hit rate and false
alarm rate, and Brier score. The models generally have a hit rate of about 0.34-0.44 for the EN
basin, and this drops slightly for the sub-basins, especially for the DWD and CMCC models,
which have rates of less than 0.25 for the Tekeze-Setit-Atbara. The ECMWF and UKMO models
show the highest rates overall. The false alarm ratios show a similar distribution across models
and basins, with lower ratios (less drought events mistakenly forecast) for the EN basin and
ECMWF and UKMO models. These results are consistent with the correlation values for the
precipitation monthly values and anomalies, indicating that the ECMWF and UKMO models do
better than the others for precipitation variability and drought, and that skill improves slightly
over larger domains, as one might expect.
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Figure 39. Number of ensembles of the UKMO model which correctly forecast observed
moderate, severe and extreme drought events, based on the SPI-1 meteorological drought index
for the EN basin. Only months that were in drought in the historic observational record are
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shown. Note that for some months, there was a drought in the historic record, but no ensembles
forecast the drought.
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Figure 40. As Figure 39, but for the ECMWF model.

Table 6. Summary statistics for lead-1 forecasts of SPI-1, moderate (SPI <-1) drought events.
Hit rates and false alarm ratios are averaged over all ensemble members.

Basin Model Hit rate False alarm ratio Brier score
Eastern Nile ECMWF 0.44 0.55 0.08
UKMO 0.38 0.59 0.12
Meteo-France 0.34 0.65 0.11
DWD 0.36 0.64 0.19
CMCC 0.36 0.62 0.12
Baro-Akobo-Sobat- ECMWF 0.34 0.61 0.14
White Nile UKMO 0.33 0.59 0.14
Meteo-France 0.29 0.72 0.15
DWD 0.28 0.65 0.15
CMCC 0.31 0.69 0.15
Abay-Blue Nile ECMWF 0.30 0.70 0.12
UKMO 0.37 0.54 0.12
Meteo-France 0.31 0.71 0.13
DWD 0.24 0.73 0.14
CMCC 0.24 0.75 0.13
Tekeze-Setit- ECMWF 0.34 0.67 0.11
Atbara UKMO 0.35 0.66 0.10
Meteo-France 0.30 0.72 0.11
DWD 0.22 0.76 0.11
CMCC 0.24 0.75 0.12

3.3.8. Evaluation of Multi-model Ensemble

We first show the improvement in skill from an equally weighted multi-model mean (MMM,
unweighted mean), and then show how this can be improved further by taking into account the
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skill of individual models (MMWM, weighted mean). The weights for lead-1 precipitation
forecasts are shown in Figure 41. These weights can be calculated for each lead time and target
month, but for simplicity we assume that the weights are unchanging. The ECMWF and UKMO
models have the highest weights over the entire EN basin (Table 7), and are generally higher in
the southern part, with the DWD having lower weight in this area. Otherwise the weights are
reasonably similar among the models, ranging from about 0.1 (10 %) to 0.25 (25 %). The largest
differences among models are in the drier north, where the UKMO weights are up to 50 % and
Meteo-France and DWD have weights close to zero.
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Figure 41. Spatial distribution of model weights (%) for monthly precipitation. The weights are
calculated based on the covariability of the lead-1 forecasts from each model with the
observational data.

Table 7. Model weights based on forecast skill for lead-1 monthly precipitation. Weights are
averaged over the EN basin.

Model EN basin average weight
ECMWF 0.25
UKMO 0.24
Meteo-France 0.18
DWD 0.15
CMCC 0.18
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Figure 42 shows the EN basin average monthly precipitation anomalies for MSWEP, the
ECMWF model (as an example of one of the better performing models) and the multi-model
ensemble unweighted (MMM) and weighted mean (MMWM) for lead-1. The MMM and
MMWM follow the observation (MSWEP) better than the ECMWF model, as expected. The
difference between the MMM and MMWM is visually small. The equivalent correlation values
are given in Table 8.
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Figure 42. Time series of EN basin average monthly precipitation anomalies for 1994-2016 of
the MSWEP observational dataset compared to the ECMWF model (top), the multi-model
unweighted mean (MMM) (middle), and the multi-model weighted mean (MMWM) (bottom).

Table 8. Correlation of the lead-1, ensemble mean precipitation (absolute and anomaly) forecasts
for each model and the multi-model unweighted (MMM) and weighted (MMWM) means.

Model Monthly | Monthly anomaly
ECMWF 0.89 0.60
UKMO 0.90 0.52
Meteo-France 0.81 0.51
DWD 0.75 0.27
CMCC 0.83 0.46
MMM 0.92 0.64
MMWM 0.93 0.64

Figure 43 shows the spatial distribution of correlation values for the 5 models, the MMM and
the MMWM for MAM, JJAS and OND. This is similar to Figure 30 but includes the MMM and
MMWM results, which again show the higher skill in the lower part of the basin, but a slightly
more robust spatial pattern of higher correlation values compared to the better performing
models, such as ECMWF, and CMCC for MAM. This is also shown in Figure 44 for Tmax and
Tmin for all months. As the weights for the MMWM are based on the skill values for all months
pooled together, there may be opportunities to improve the skill of the MMWM by applying the
weights separately for each month and lead time.
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Figure 43. Spatial distribution of correlation between MSWEP and the five models, the
unweighted multi-model mean, and the weighted multi-model mean, for (a) MAM, (b) JJAS, and
(c) OND precipitation anomalies.
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Figure 44. Spatial distribution of correlation between MSWEP and the five models, the
unweighted multi-model mean, and the weighted multi-model mean, for (top) Tmax and
(bottom) Tmin anomalies.

3.4. Evaluation of Hydrological forecasts

Evaluation of the hydrological forecasts is done in a similar way to the climate forecasts,
focusing on monthly correlations at different lead times for the different models and the multi-
model mean. Soil moisture is evaluated at the grid cell scale, and streamflow is evaluated at all
river reaches in the full Nile basin, and for 30 selected forecast points of interest to ENTRO

(Table 9).

Table 9. Locations and type of the 30 selected forecast points in the EN basin.

ID Location Region Country Lon Lat (°) Purpose Infrastr.
)
1 Baro-at-Gambella Baro- Ethiopia 34.65 8.23 eflow; irrigation BAS_Gambella
Akobo Dam
2 DS-Pibor-and- Baro- South Sudan 3298  7.89 dam operation; BAS Pibor
Akobo-confl Akobo water supply; eflow; Irrigation
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37 Beko-Abo Blue Nile Ethiopia 36.50 10.47  dam operation No
38 Didessa Blue Nile Ethiopia 3569 9.94 dam operation BN_Didessa Dam
39 GERD/Eddiem Blue Nile Ethiopia 3509 11.22  dam operation GERD
41 Rosires-Dam Blue Nile Sudan 3439 11.80 dam operation Roseires Dam;
Gezira Scheme
42 Singa Blue Nile Sudan 33.95 13.17 dam operation Sinnar Dam;
Gezira Scheme
43  Sennar-Dam Blue Nile Sudan 33.63 13.55 dam operation Sinnar Dam;
Gezira Scheme
44  Ombegara Blue Nile Sudan 3397 13.73  eflow; dam Karsh Elfil at
operation; irrigation  Rahad River
45  Karsh-Elfil-Rahad Blue Nile Sudan 34.07 1391 eflow; dam Om Bagra at
operation; irrigation  Dinder River
49 Merowe-dam Main Nile ~ Sudan 32.06 18.68 dam operation Merowe Dam
51 Kokka Main Nile  Sudan 30.59  20.02 eflow Kajbar Dam
52 High-Aswan-Dam Main Nile  Egypt; 3290 23.82 dam operation High Aswan Dam
Sudan

Figure 45 shows the skill of the HBV model forecasts for monthly soil moisture anomalies as
forced by the downscaled and bias-corrected precipitation and temperature data from the climate
models and ESP. The lead-1 correlations are generally above 0.8 for all models, except for in
parts of the southern part of the EN basin. The ECMWF forced values are slightly higher in the
wetter south than other models, but lower in the north The correlations drop quickly with lead
time for all models in the south, but persist in the north for most models and the ESP, with values
remaining above 0.6 in the middle part of the EN basin. This is expected to some extent because
of the inherent persistence in soil moisture, but the slightly higher skill from the climate models
compared to ESP is encouraging. The sub-basin correlations are summarized in Figure 46 for
ECMWEF and ESP, confirming that the climate model forced forecasts of soil moisture anomalies
from ECMWEF slightly outperform the ESP, especially for the Baro-Akabo-Sobat White Nile
basin.

(a) ECMWF
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Figure 45. Spatial distribution of correlation of monthly soil moisture anomalies between the
observational historic simulation and those forced by the ECMWEF, UKMO, Meteo-France and
ESP climate forecasts.
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Figure 46. For the three main sub-basins of the lower part of the EN basin, mean correlations of
monthly soil moisture (top) and anomalies (bottom) between the observational historic
simulation and those forced by the ECMWF and ESP climate forecasts.

The skill for streamflow is summarized in Figure 47 for ECMWF and ESP, and some
example forecasts for selected points (as listed in Table 9) are shown in Figure 48, including the
ensemble members and ensemble mean. Figure 47 shows the diversity of skill across the basin
which is dictated by the variation in the skill of climate forcing spatially and how that skill is
propagated through the river network. Overall, the spatial variation in skill is similar between the
two, but the ECMWF forecasts are less skilful than the ESP in the western part of the basin.
ECMWF tends to slightly outperform ESP in other regions such as the southeast, but the
differences are small and dependent on the lead time. Of note is the persistence of correlation
values in certain regions, even out to 6 months, although this is partly due to the strong
seasonality.

leadl
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Figure 47. Correlation values of monthly streamflow at the 69,744 river reaches between the
observational historic simulation and the simulations forced by the ECMWF (top) and ESP

(bottom) climate forecasts.
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Figure 48. Examples of streamflow forecasts derived from the ECMWF climate forecasts,
initialized on 1-March-2011, for (left) the Baro-at-Gambella Dam in Ethiopia (ID=1) and (right)
the Didessa Dam on the Blue Nile in Ethiopia (ID=38), at daily and monthly time scales. The
grey lines are the individual ensemble members, the black line if the ensemble mean, and the red
is the observational estimate.

3.5. Online Dashboard

The Eastern Nile Drought Monitor system is accessible from a web-based application, which is made up
of three parts:
1) a “dashboard” tab showing a summary of current conditions and the latest forecast;
2) a series of “analysis” tabs, which show more detailed information; and
3) an“About/Help” tab, which provides background information on the system and help on how to use
the web app interface. More details on each of these tabs is provided next.
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Dashboard Tab
The dashboard tab shows a summary of current conditions and the latest forecast (Figure 49). It consists
of three main parts:

Figure 49. Screenshot of the- EN drought monitoring syste_:rri Iiashi)oard.

Eastern Nile Drought Monitor (demo version) =

A summary of drought in the Nile basin in three warning boxes which give a visual summary of
the date of the latest update of the system, the area in drought averaged over the past week, and
the change in drought area since the week before. These drought statistics are color-coded to
indicate different levels of warning. For the drought area: green < 10%; 10% <= yellow < 30%;
30% <= orange < 50%; 50% < red. For the change in drought area: red indicates an increase and
green indicates a decrease.

A map showing current conditions for different hydrological variables and drought indices.
Overlain on these are vector layers for context (e.g. dams, cities, river network) and to extract
more detailed information for selected polygons (Nile basin, Nile sub-basins) and points of
interest (river network locations). The map layers can be downloaded into standard GeoTiff
format for use in other software such as a Geographical Information System (GIS).

A time series of past conditions for the last 6 months and forecasts for the next 6 months relative
to the date of the latest update. The data shown can be updated by clicking on the different
polygons/points in the main map. Again, the data can be download to standard csv format. The
time series shows past conditions for a range of hydrological variables, plus a drought index and
the area in drought. The future conditions are shown just for the drought index and are presented
as the mean of the forecast ensemble and the 5th and 95th percentiles of its distribution. Summary
statistics of the time series information is given, showing the current area in drought, recent
rainfall accumulation etc.
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Streamflow Analysis Tab

This analysis tab (Figure 50) shows more detailed information on current and forecast conditions, with a
focus on streamflow at a series of points of interest.On the left of the tab is are two time series charts
showing the past 6 months and future 6 months forecast of streamflow for two locations of interest. The
full list of locations is given in the table on the right, which also lists the current streamflow conditions
(m3/s) and the equivalent percentile. The user can compare pairs of forecast points by selecting locations
from the drop down list or clicking on the table rows.
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Figure 50. Screenshot of the EN drought monitoring system showing the analysis page for selected
streamflow forecast points.

Sub-Basin Analysis Tab

This analysis tab shows more detailed information on current and forecast conditions for the sub-basins,
with a focus on drought indices and water budget components.The full list of sub-basins is given in the
table at the top, which also lists several statistics about recent rainfall and current drought indices. The
user can sort the columns of the table by clicking on the arrows at the top of each column, and filter the
list using the search box.

Below are three time series showing soil moisture drought conditions, SPI drought conditions and the
water budget for the past 6 months and future 6 months forecast. The user can update which sub-basin is
shown in each of the time series charts by clicking on a row of the table.

Basin Analysis Tab
This analysis tab shows more detailed information on current and forecast conditions for the EN basin,
with a focus on maps of drought indices, and water budget components.
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Eastern Nile Drought Monitor (demo version)

Forecast Analysis Tab
This analysis tab shows more detailed information on the forecasts (Figure 51). A series of information
boxes shows information on the system models, forecast statistics, and forecast status. A series of maps
showing the probability of drought for soil moisture and SPI for different lead times (1-month, 2-months,
...).Skill maps showing the long-term skill of the forecasts. These can be used to identify where forecasts
are likely to be more robust.
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Hydrological model : HBY
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Figure 51. Screenshot of the EN drought monitoring system showing the forecasts analysis page, which
presents statistics on the current forecasts and maps of the probability of drought for future time periods.
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The user can generate a downloadable report (in html or pdf format) that summarizes the monitoring and
forecast data shown in the dashboard. The report includes textual summaries of current conditions (e.g.
total area in drought, change in drought area, etc), and maps of current and future forecast conditions for
the EN basin, as well as a timeseries of drought conditions averaged over the whole basin. Table
summaries and timeseries of sub-basin average conditions (hydrology, drought metrics) are also provided.
Finally a short summary of the background of the system is provided to give context.

4. Conclusions and Recommendations

A demonstration hydrological forecast system has been developed and implemented for the EN basin,
focused on drought monitoring and forecasting. The system combines ground, satellite and model data to
provide estimates of climate and hydrological variables at high resolution for the recent past, current
conditions and forecasts out to 6 months. The forecasts are based on climate model forecasts from the
ECWMF set of seasonal models, which are analyzed based on their set of hindcasts for their ability to
forecast the evolution of seasonal climate and specific drought events.The climate forecasts are
downscaled and bias corrected, and used to force a hydrological model (HBV) and river routing model
(RAPID) to produce hydrological forecasts of key variables including soil moisture and streamflow. The
skill of the hydrological forecasts is analyzed relative to climatological based forecasts. The system is
demonstrated operationally for recent forecasts times, accessible from an online interface that includes a
dashboard of current and forecast conditions across the basin, and a set of more detailed analysis
functions.

4.1. Conclusions

1. The reconstruction of historic climate and hydrology provides a high-resolution and state-of-the-
art dataset for use in hydroclimate studies and water resources assessments, and forms the basis of
the EN drought monitoring system. The dataset is based on the MSWEP precipitation dataset
which has been shown to perform well over the basin, and outperforms other similar gridded
large-scale datasets here and in most other regions globally. Because of this, the estimated
hydrological variables likely provide a good representation of the hydrological cycle over the
basin. Comparisons with observed streamflow records for a limited set of locations in the basin
show reasonable performance to evidence this. Previous evaluations against streamflow and soil
moisture observations in other locations globally confirm this.

2. The system demonstratesreasonable skillfor the climate variables (precipitation and temperature)
with better skill for temperature, as expected. There is reasonable skill in estimating the evolution
of seasonal climate at short lead times (1-2 months), and modest skill in predicting specific
drought events. The five evaluated climate models show a range of skill with some models
outperforming the others in general (e.g. ECMWF) although this is not the case for all metrics,
seasons and lead times.

3. Improved skill is found by merging models together into a multi-rnodel ensemble, which matches
or outperforms any individual modelfor the skill metrics evaluated, which is expected. The
weighted multi-model ensemble improves the skill slightly but further work is needed to analyze
performance and refine the model skill weightings. Because of this, and to simplify the running of
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the system, the best performing model, ECWMEF, was chosen to provide the climate forecasts
operationally.

The skill of the hydrological forecasts is generally better than for the climate forecasts (despite
being driven by these) because of hydrological persistence, especially for soil moisture and for
streamflow in larger rivers and downstream. There is a diversity of skill across the basin, which is
a function of the climate forcing skill but also how skill is propagated through the river network,
and this generally outperforms the climatologically based ESP forecasts.

The system has beendemonstrated operationally for recent forecasts times (June, July, August,
2020), which confirms that the data processing and modeling chain works and can be run
automatically with very little human interaction.

Overall, the system provides useful predictive skill for hydrological monitoring and forecasting
with a focus on drought, and there is an expectation that it can help support information services
in ENTRO and decision making in the NBI and its member states.

4.2. Recommendations

L.

The system provides high-resolution estimates at Skm for the gridded climate and hydrology data,
and on a vector-based river network for 10,000s of river reaches. It is recommended that gridded
data and associated modeling be increased to, say, 1km resolution, to represent the heterogeneity
of the landscape, especially in the wetter and more topographically diverse regions of the basin.
Although this is constrained by the lack of fine spatial resolution rainfall data, there may be
benefits to focusing on higher resolutionfor certain parts of the basin.

Further validation of the historic estimates and forecasts using more available ground
observations as well as more use of satellite estimates of hydrologic variables. Currently,
validation has been done for a small set of stations in Ethiopia with reasonable length of records
(9 stations) and it would be useful to expand this to more stations across the wetter part of the
basin. Furthermore, given the availability of satellite remote sensing data of many aspects of the
water cycle (soil moisture, evapotranspiration, water levels) it would be useful to make
comparisons spatially, with a focus on spatial metrics of how well the patterns of variability are
presented.

The operational system is based on a single hydrological model (HBV), which despite being
carefully implemented and evaluated, has errors in the representation of hydrology in the
basin.This is partially due to errors in the climate forcing, and due to parameter uncertainties
despite the regionalization of parameters. It is recommended that other models are considered to
capture the structural uncertainties in the modeling approach. For example, the HBV model has
simplified representation of certain processes in the sub-surface, and could be compared to
models which have a more sophisticated approach (e.g. VIC). There is scope to provide an
ensemble of hydrological estimates based on multiple models as well as via incorporation of
parameter uncertainties within those models.

Similarly, a single climate forecast model (ECMWF) is implemented in the operational system
and there would be benefits to further develop and implement a multi-model ensemble to take
advantage of individual climate model skill. Further analysis is needed to understand where and
when the models are skillful, and therefore how they could be combined better into a weighted
multi-model ensemble. Other forecast approaches could also be considered based on climatology
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and conditional sampling, as well as statistical models for certain regions/locations and specific
forecast variables.

5. Further stakeholder and user feedback is needed to refine the system and its outputs. In particular,
further discussions would be useful to understand how the system can be used operationally
(technically and for decision making)and how the system can be better integrated into ENTRO’s
technical operations. In terms of decision making, further discussions are required to understand
how the system could be used and how it can be better tailored to provide decision relevant
information and data, including refinements to the online dashboard.
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Figure Al. Precipitation monthly average climatological mean (1993-2016) for the sub-basins
for MSWEP and the five climate models, for leads 1-6. Units are mm/month.
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Figure A2.Tmax monthly average climatological mean (1993-2016) averaged over theEN basin

for MSMet and the five climate models, for leads 1-6 months.
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Figure A3.Tmin monthly average climatological mean (1993-2016) averaged over theEN basin
for MSMet and the five climate models, for leads 1-6 months.
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